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CALCULATION OF THE THERMAL STRESSES IN A SOLIDIFYING CRUST
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The equation for the thermoelastic displacement potential in the
quasi-steady approximation is refined by taking the body force po-
tential into account. The equation is solved for bodies of simple
shape. The optimal law of solidification ensuring minimum tem-
perature stresses in the crust is determined for an infinite slab.

The equation of thermoelasticity written in dis~-
placements for the quasi~steady approximation has
the form [1]

uy?U 4 (b + p)grad div U —
—(3A+2p)a gradT +F=0. @)

When this equation is used to solve problems of ther-
moelasticity associated with the heating or cooling of
bodies without phasetransformations and inthe absence
of external forces, the body force vector F is taken
equal to zero., Neglecting it leads to a paradoxical
result: the calculations give nonzero thermal stresses
at the crystallization from, ‘At the same tim [2], new
layers forming dimensions corresponding to the crust
of the ingot at the time of their formation, Therefore
there should be no stresses at the crystallization
front,

As will be seen in what follows, taking the body
force vector into account in Eq. (1) makes it pos~
sible to eliminate this paradox.
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Fig, 1. Stress distribution over thickness of crust
for an infinite slab solidifying according to the
laws; a) ¢ =1 —2Fo (the figures on the curves

represent Fo x 10); b) ¢ =1 —+vFo,

Using (with minor changes) the method developed
in [3,4], we introduce the thermoelastic displacement
potential ¢ satisfying the condition

U= grad ®. (2)

We also introduce the quantity ¢ (x;) proportional to
the body force potential and depending only on the
coordinates x;:

F= —(3A + 2u)a grad ¢. (3)
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Fig. 2. Parameters ky and &, of the optimum
law of solidification as functions of the aver-
age rate of solidification Waye

Then from Eq. (1)
(% -+ 2u) grad (7°®) = (3% + 2p) a.grad (T + @). (4)

Integrating with respect to the coordinates xj and
assuming that o = const, we obtain

_Shd 2

o a[T+¢(x) -+ D), (5)

V'O
where D is a constant of integration which can depend
only on time T.

For the stresses ojx we have [3]

Fo
Ox;0%,

O = 2 ( — V08, ) . (6)

As boundary conditions it is convenient to assign
the following:
1) at the outer surface of the body

oo
Ox

Ully= | = [ (% T) (7
n

2) on the contour of the solidification front

Olp =0 (8)

In the particular case of bodies of simple shape
(infinite slab, infinite cylinder, sphere) Eq. (5) may
be simplified and written in the following dimen~
sionless form:
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Fig. 3. Optimal law of crust growth in an infinite
slab. Figures on the curves are values of wyy.

The expressions for the dimensionless stresses are
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As the boundary condition at the outer surface it is
convenient to take the zero-displacement condition

oP
ony

=0

=1

(13)

Using (10)—(12), we can write the condition of zero
stresses at the crystallization front in the form
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&P

—_— = 0.
an";

=

(15)

Integrating (9) with respect to 7y with allowance for
condition (14), we obtain

(6 + Pp(n) + y(Fo)lnrdn,. (16)

mb
K

J“[eqt b (1) + v (Fo)l nrd n, +

+8[0+p (1) + v (Fo)l. (17

To satisfy condition (15) it is enough that
¥(Fo) = — 0, — (©). (18)

Here, 60T is the dimensionless crystallization tem-
perature, a constant, and by definition

PO = vy -

Finally, from (13), using (16), we obtain

1
[ 18+ (n) + y(Fo)lnpdn, = 0. (19)
4

Using (18), we get

3

[ [o(n)— (@) npdn, = 5 (Op —O)nyrd s

4

(20)

Differentiating (20) with respect to ¢ and using the
fact that § may be regarded as a function of n; and¢,
we have

1 a6

1
ay ()
oP _ — pmH) =\§‘ md
0N |yt =0 (14) m+1 (- dt ; at Ny émh
8.-8, o
I a b
? N
2 — P TN
/A 16 /\\/.a
16 /,/ 4 25 ™~/
4 / 2 2 7 \/'4
//// . L] /2
08 // %/ ’_;__42 15 =
/ L g6
%/‘ ) 06
¢ a8 1z ¥ 04 a6 12 Fo

Fig. 4. Thermal conditions at outer surface of slab ensuring solidifica-
tion according to the optimum law (figures on curves are values of
wgy): a) variation with time of the difference of the dimensionless
crystallization and surface temperatures Sr-— ny; b) variation in

time of the heat flow from the surface qp =— 86/9y; | .
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and

p(E) =

1
* 90
gm—]-l 5 ac

Where N is an arbitrary constant of integration, From
the last expression, substituting n; for the upper limit
of integration ¢ into the second integral, by virtue of

the fact that ;) depends on only one argument, we obtain

—(m + 1)5 nrdn N, (2D)

Y(ny) =
T dg Y
1
Using (18), (21), and (22}, we have

9+1P(m)+v(F0)=9—6r+

+(m + l)j wrdn. (29)
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For the dimensionless stresses we obtain

M
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x j =

] dm} nrdn, (24)

Gy = 2 G b0, — 8 —(m + 1) X
"4 a0
X ndyy, (25)
j [ —mt j T N éM
N m—1
o‘%zﬂ—z——cu+9r——9—(m+l)><
M, 1
a0
X\S C‘”’fl \S‘ ot nrd . (26)
¢ ¢

From the written expressions it follows that the
_stresses in the ingot crust are equal to zero if

dt * 30
I—gm S ot

However, in accordance with (23), this condition
is equivalent to the requirement

=—p(ny) —vy (Fo).

Ny

9*9p+(m+1)j

‘n’lﬂd‘r]l = 0.

This means that the temperature must be expressed
as the sum of two functions, one of which depends
only on the coordinate 7n;, and the other only on time
Fo. Such an expression for the temperature does not
satisfy the heat-conduction equati>n and hence cannot
be realized. Therefore the solidifying process must
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be accompanied by the appearance of temperature
stresses., The authors of [2] arrive at a similar
conclusion,

For an infinite slab (m =0) from (24)—(26)

0’;1=0,
Ogy = Opp = 0% =
M1 )3
P dg (ae
=0,—0— | =2 { — dn,. 27
T jl—cy (9 7]1 ( )

We assume that solidification proceeds according to a
linear law:

t=1—aFo. (28)

Using the Stefan solution [5] of the problem for the
temperature field

8 =0+ 1 —expfo(n—10), (29)
we obtain
= exp [0 (n— &) —
w(l~)
— 11— —I—(expy—l)dyz
otl-—ny)
= exp [o (0 — )] — L—In [(1 — DAL —n)] +
+Ei* jo(l —q)] —E* [0 (1 —7)], (30)
where

El*(z)—f —expydy C+1nz+2 .
n-nl
When 5, =1 (on the surface of the slab), using the
series representation of the functions Ei*(z) and exp(z),
we obtain

©

ol =Y (1__” Mﬁ—'_@"_ (31)

n={

Since w(l—¢) >0, it follows that 0%, =4 =0.

Thus, for a linear law of solidification the stresses
at the surface of an infinite slab are always tensile
(plus sign).

We will specify a more general law of solidification:

t=14+8— vy 8*+ & Fo. {32)

When 6 =0 it goes over into the familiar "square-root
law™

t=1— k) TFo, (33)
and when 6 — «, k? —w§ it yields the linear law
{=1-—aFo.

It is easy to verify that the solution of the inverse
problem of solidification with given law of solidifi-

cation (32} will be
kz
kexp T {erf (—2—> —

&

om0 VE
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——erf(—k— I—M)} (34)

2 1—z+6

When 6 =0 this expression goes over into the Stefan
solution [6] for law of solidification (33), and when
6 — o k?~2w6 from (34) we obtain solution (29).
Using (34), from (27) we obtain we obtain

0*=ﬁ—’;—exp (%2) x
x[erf (—';—) — (_;L Ir*_"T:’_:)];F
+"§ llc )

:
<limee [ (- ozl 1

When 8 =0 this expression is easily integrated:

(35)

2
o*zﬁi exp(k—\x
2 4

/

k E 11—
X[erf(;)——erf (? F‘I—C )] +
+ [exp (—k:—>~1]1n—11——3%.

Recalling that exp (k?/4) — 1> 0 when k # 0 and that
the first term in (36) is a bounded quantity, we obtain

(36)

0*‘[(]‘:1 - — 00,

Thus, at the surface of an infinite slab solidifying
according to law (33) infinitely large compressive
stresses (with a minus sign) develop.

The nature of the stress distribution over the
thickness of a slab solidifying according to laws (28)
and (33) is illustrated in Fig. 1.

It should be noted that at a certain ratio of the
parameters k? and 8 solidification according to inter-
mediate law (32) makes it possible to obtain a minimum
(in a certain sense) state of stress in the crust,

As the parameter charcterizing the stress level in the
slab we will take the stress at the outer surface (n;=
=1) at the end of solidification (¢ = 0). Then the mini-
mum, in this sense, state of stress of the crust is de-
termined by a zero value of the parameter o*]nZI; £=0°

We introduce the average rate of growth of solid
phase w =1/Fo*, which characterizes the rate of
solidification for some law of crust growth, From
(32), considering that ¢{Fo¥ = 0, we obtain

B =a, (1426). (37)
Using (35), we can write the condition of f minimum
state of stress of the crust in the form
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- 5 ;_{exp [m.avy Qi?ﬁ)(_ytz_‘s)} —1ldg.  (38)
0
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From this equationtheoptimum values oftheparameter
8 = 8, were determined numerically as a function of
the given rate of solidification way (Fig. 2). The same
figure also contains the optimum values of k; calcu-
lated from (37)

Hence we find the optimum law of solidification for
a given rate of solidification Way (Fig. 3)

The law of variation of the surface temperature or
heat flow from the surface intime ensuring an optimum
law of solidification can be obtained from (34). The
results of the corresponding calculations are pre-
sented in Fig, 4.

NOTATION

X; (i=1,2,3) denote variable coordinates; X is the
characteristic dimension of the body; 7 is time; Uis
the displacement vector; U; -its components along the
coordinate axes (i =1,2,3); E is the modulus of elasti-
city; v is Poisson's ratio; T is temperature; Tr is
the crystallization temperature; a is the linear coef-
ficient of thermal expansion; F is the body—force

_vector; & is thethermoelastic displacement potential;

‘dis the fixed value of thermoelastic displacement
potential; D(7) is anarbitrary function of time obtained
by integrating with respect to the coordinates; oy is
the stress tensor; 0y is the Kronecker delta (equal

to 0 when i = k and to 1 when i =k); m is the shape
factor equal to 0 for the slab, 1 for the cylinder, 2

for the sphere; @ is the thermal diffusivity; c is the
specific heat; p is the specific latent heat of crystal-
lization; A =vE/(1+v) 1 — 2v); u=E/2(1+v) an Lamé
constants; cp(xi)Nis the potential of the vector F/3) +
+2p) a, n; =xi/Xis a dimensionless variable coordinate;
¢ is a dimensionless coordinate of crystallization
front; Fo =at/§~( 2 is dimensionless time; Fo* is the
dimensionless duration of total solidification; P =& /&
is the dimensionless thermoelastic displacement po-
tential; b =&/X2; 0% (A +2p) ¢/2u(3A +2p)ap is the
dimensionless stress tensor; 6 = Te/p isthedimension-
less variable temperature; o7 = Trc/p is the dimen-
sionless crystallization temperature; §(n;) = ¢c/p;
AMFo) =Dc/p.
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